Sydney: BRT tunnel and trams

December 17, 2012

Sydney is confronted to bus congestion in its Core Business District (CBD):

6,000 bus enter into the Sydney CBD per day, 1000 during the peak hour. Too many bus routes lead to a poorly legible network

Beside a poorly legible network (Sydney has 850 bus routes) [7], the great number of bus routes is also a source of inefficiency : thought that the offering bus-seat capacity could be great, the practical one could be much less on a given corridor (over-supply on some bus routes is not compensating under supply on others)

The European solution

It is a problem many European cities are facing, and in Europe, it is in general the impetuous to switch to LRT – the rational is simple:

  • A modern Tram replaces 5 buses
  • Associated network consolidation allows a better adjustment of the offer to the demand, as well as a better legibility of it
  • A Tram, being electric powered, generate less noise, and pollution

Hence trams improves the livability of the city. Generally, European modern trams are not justified by speed or urban development opportunities, which are very limited in mature cities but mainly by ridership. They operates on trunk lines fed by bus routes:

  • Passengers have to transfer

The fact that the transfer from bus to tram, is not compensated by a time gain (like it could be from bus to subway) is one of the main drawback of such an approach. Providing a superior service and experience is a way to compensate for the disagreement. The European solution in Sydney’s CBD could be the vision proposed by Gehl Architects [2]:

Pedestrian George Street with LRT, in a typically European arrangement.

Pedestrian George Street with LRT, in a typically European arrangement – credit picture (2)

The Australian approach

Australia is land of the finest BRTs. Tunnel a BRT is a solution, natural enough in Sydney, to be considered, in despite of its price tag; $2 Billions, for a ~2 km tunnel. The rational is simple:

  • A BRT can avoid a transfer

The debate

BRT vs LRT, the context of the debate - Left: Bus volumes entering the Sydney City Centre during the two hour morning peak - Right: proposed BRT and LRT alignment and cost. The full LRT is 12 km long with implementation cost estimated at $1.6B

You could expect the government agencies, ministries and other actors to debate on facts, and not on opinions to lobby one system over another:

reading the different reports [3][4][5] will prove you wrong.

Below is how the debate has occurred between two New South Wales (NSW) government outlets, Transport NSW, favoring the LRT, and Infrastructure NSW (InNSW), an “independent agency”, supposed to not base recommendation on politic allegiance, favoring the BRT:

InNSW estimates the current demand at 9000 pphpd in the corridor [5]. The different system are assumed as below by the different actors:

System InNSW [5] Transport NSW [3] Certu [6]
BRT Capacity 20,000 3,500
LRT Capacity [9] 9,000 12,000 6,000
LRT Frequency 2mn 2mn 3mn

The numbers provided by Certu (a French agency), are for reference. They are considering optimal surface operation conditions (signal preemption possible, perfect interval maintained) signaling the typical area of relevance for a given technology. Thought the numbers advanced by the Australian authorities are theoretically possible, they most probably supposes a compromise on the level of service:

High capacity BRT, like the one pictured in Brisbane come at a  cost

High capacity BRT, like the one pictured in Brisbane come at a cost – credit photo (1)

The InNSW report contains lot of fear mongering on LRTs, but what is noticeable in the case of the both approaches, is that none quantifies travel time, neither expected operating cost, not even speaking of a cost/benefit ratio.

More importantly, beside removing bus of the surface, the BRT tunnel tries to address a problem different from the LRT: the former addresses regional access-and so doing tend to largely duplicate an existing rail corridor- while the later addresses the more local access into the CBD. One will find some more detail, especially question about the BRT approach in [8]

The urban approach: George Street

As suggested before, the tram choice over a tunnel BRT is not only a transportation choice, it is an urbanistic one too: George street is a 2.5km long street, it is the major Sydney spine. Jan Gehl compares its potential to the one mile long Barcelona’s las Ramblas [2]:

  • Both are bounded, by the sea on one side, and by a major commuter railway station on the other
  • Both are of similar with, 22 to 30m for George street

The Cost of the different approaches for George street:

BRT Tunnel [5] Surface LRT [3]
$2B $500M

InNSW suggested that George street -20 to 30m width- is not wide enough to accommodate both a tram and pedestrians, and explains that segregation of transport and pedestrian activities, or aggressive pedestrianization, is a better objective [5] (There is very few street of this wide successfully fully pedestrianized [10]). the Bus BRT is considered as a rapid transit with 2 underground stations [5].

George Street cross-section – as proposed by Gehl architects – credit (2)

Jan Gehl touted the concept of overlap use, with trams sharing the urban space with pedestrians, supporting thriving activities on the rather wide George street, and the neighboring alleys and lanes. In fact Transport for NSW states in [3]:


International experience indicates that the pedestrianization of George street without activation by light rail could reduce safety and accessibility, leading to a decline in retail activity.

The surface tram option is envisioned with a stop every 350m, so the tram is considered as a people mover. Evolving in a shared space, its average speed will not be much better than 10km/h on George street – Rest of the alignment is in a more “suburban” environment, so average speed outside the CBD should be more competitive with existing option

Some questions

At the end the LRT has been chosen over the BRT. Nevertheless, considering the expected passenger volume, one could still question this choice:

Shared spaces work well when traffic is light :

  • Crossing the street is unimpeded by traffic (that is one advantage of fewer trains over more buses)

In the George street case, the demand suggests a train every mn, so starting to create a “wall” of trains:

Too heavy LRT traffic can compromise the "sharing space" concept

Too heavy LRT traffic can compromise the “sharing space” concept

But what could be of more concern, is that the system could be under-sized. The considered 9,000 pphpd requirement suggests that the debate should not have been a BRT versus trams one, but eventually trams versus a heavier rail mode, including a grade separated LRT – that is the Ottawa direction – or extension of the Sydney Cityrail (a S-bahn or RER equivalent). The later is fortunately on the menu [7], and hopefully will go in a direction to reduce the pressure on the tram.

Lessons for Vancouver.

Th Sydney LRT choice has generated some interest in Vancouver here and there : The Sydney choice is done to address problems very different of the ones faced either by Vancouver or Surrey. Still, the underlying motivation, for the heavy transit investment, is mainly to address existing demand. It also shows you are better to understand what objective you are trying to pursue, before embarking into a technology debate, which can lead on exaggerated and misleading claims.

If there is one lesson to be directly learned for Vancouver, it is the idea that [3]:


separating pedestrians and transport is contrary to good planning practice and international experience, which shows transport and pedestrians should be integrated to support thriving cities

Transit at  Sydney Town Hall

Transit at Sydney Town Hall

Integrating transit into pedestrian oriented streets, is also the only way to have an extensive and still successful pedestrian friendly street network. In other word, let transit work, is the first and probably most important step toward bold pedestrianization scheme: An important lesson we could learn more especially fromWellington, NZ.


All $ figure in Asutralian $


[1] flickr user SHOROC

[2] George street Urban design study, Gehl Architects for City of Sydney, January 2012

[3] Sydney Light rail’s future, Transport for NSW, December 2012

[4] Metro Transport Sydney’s position on LRT

[5] First things first, Infra NSW, October 2012.

[6] Tramway et Bus à Haut Niveau de Service
(BHNS) en France : domaines de pertinence en zone urbaine
from Transport/Environnement/Circulation (TEC) n° 203, September 209.

[7] Transportation Master Plan, Transport for NSW, December 2012

[8] transportsydney.wordpress.com blog.

[9] That is considering a 45m long train. Fine grained Sydney downtown grid doesn’t allow for much longer trains on George street without hindering access to lateral streets

[10] New York City’s Broadway at ~80 feet wide is one example, but the pedestrianized block around Times Square see a traffic of 350,000 pedestrians/day – a uncommonly high volume.

Or how some streetcar advocates make their case by using the Iraq war’s lobbyists strategy.

Such strategy is not to be embarrassed with facts, but to express an opinion legitimated by an ample corpus of previously expressed opinions, which are presented as facts. It becomes then a mythology, because it is asked to people to believe unquestionably in them. and if it succeed at it, the unsubstantiated “facts” become “truisms”!

The streetcar example with a report : Streetcar Land Use Study

It is a report commissioned and published by the Planning department of the District of Columbia- so must be serious (We refer to it as “the report”)- which explains that a Washington D.C. streetcar network could generate $15Billion of investment along its corridors.

How it arrives to such a conclusion?

Basically it is grounded on a Portland streetcar company‘s paper [9], analyzing the real estate development in the years 1997-2008, which eventually happens to coincide with a global real estate boom, and general gentrification of cities’ downtown across the continent.

In addition of the global factors above, it has been also some more local factor attracting development in Portland:

  • A green belt constraining the development area
  • Other transit development (3 max line, an aerial tram…), all converging in downtown
  • Insitutional development [1]
  • Tax credit [1]
  • A street car loop

What is the exact contribution of the streetcar loop among the above cited parameters? It is not deciphered by the Washington D.C. study, apparently considering that the entirety of the developments occurring in the 2 blocks of the streetcar are triggered by virtue of its track presence.

No streetcar related redevelopment example: left, The San Fernando Building in LA, A successful revitalization effort in Down-town Los Angeles by developer Tom Gilmore- photo credit (3)-right the Woodward building neighborhood in Vancouver

What are the inherent quality of the streetcar provoking that?

The report describes it as a “Premium transit” transit service that is “reliable, predictable, and offers a high-quality ride—in other words, Metrorail [Note: the DC subway] or the streetcar“.

What about speed and frequency? does it really doesn’t matter? …and in what aspect a streetcar operating in mixed traffic can be more reliable-or predictable- than a bus?

A streetcar operating in mixed traffic is subject to the same reliability issue faced by a bus...with even less ability to avoid road impediment- credit photo (4)

What are the involved cost of the streetcar?

The venture of the report in this area is rich of learning. It states that: “Evidence [...] suggests that streetcar vehicles offer better long-term cost-benefit value than buses”. Where are the evidence? 2 references are cited:

  • Street Smart: Streetcars and Cities in the Twenty-First Century – Gloria Ohland & Shelley Poticha; 2009
  • Seven Rules for Sustainable Communities from Patrick Condon [5]

It is worth to mention, that, first the conclusions of Patrick Condon are grounded on the finding of the other referenced book, and secondly, [5] presents numbers which should be subject to caution [6].

Circular referencing, but no cross checking…That was also the strategy of the Iraq war lobbyist

In anyway, a blanket statement like “streetcar vehicles offer better long-term cost-benefit value than buses” is discounting too many parameters to be taking seriously: one of them is that the long-term cost-benefit of a vehicle is tied to its productivity, which depend in part of the ridership.

What about other alternatives

The bus alternative is briefly investigated to be better dismissed: “Although well-designed BRT systems attract some development, their impacts are typically much less than those for rail”, this by citing [7] where one will have hard time to find which aspect of [7] leads the report to such a conclusion. In fact [7] suggests that “there is growing documentation of [BRT] positive development effects; however, given the newness of most BRT systems, more information is needed” while another [8] find that “the type and level of investment occurring near BRT stations appears comparable to the experience with TOD near rail transit”. Notice that this later reference provides relevant number:

“Since the Silver Line BRT was introduced, there has been over $571 million in investment along this corridor, and the tax base grew by 247%, compared to a city average of 146%. “

Relative growth on tax base in the corridor versus average… The Kind of information the streetcar report fails to provide.

And, outside transportation… does there is no other cost-effective avenue to shape development? Institutional impetuous as seeing in Surrey BC, seems to produce good effect, other large scale development like the Woodward building in Vancouver also…

Mythology building

Like in any mythology, with the streetcar mythology, facts are second to beliefs. The Streetcar myth just needs a critical mass of believers. If enough developers and buyers believe in it, the prophecy will be self fulling…that is why all the produced literature referencing itself is paramount.

Vancouver’s believer will then ask the question as Gordon Price did: “why not at least a return of the heritage tram to Science World?“, but the question shouldn’t be framed like it, it should be

  • “what you want to try to achieve by returning the heritage tram to Science World?”

[1] Numerous of land lots, developed around the streetcar, are or were institutional, and a 10 years property tax waiver has been put in place to “faciliate” development in the streetcar corridor(source: [2])

[2] Debunking Portland The City That Doesn’t Work, Randal O’Toole, July 9, 2007

[3] Eric Richardon

[4] Jarret Walker

[5] Seven Rules for Sustainable Communities, Patrick M. Condon

[6] In term of operating/capital cost: Number provided by APTA and Translink could suggest a pretty different picture, from the one stated in [5], see for example this post.

[7]TCRP Report ıı8: Bus Rapid Transit Practitioner’s
Guide
, 2007

[8]Bus Rapid Transit and Transit Oriented Development, Breakthrough Technologies Institute, Washington, 2008

[9]Portland Streetcar Development Oriented Transit, Office of Transportation and Portland Streetcar Inc.

Friday is the last day to provide input to the phase 2 of UBC Rapid transit study. Below, we consider some challenges associated with a surface solution, noticeably LRT on Broadway

Safety question

The suggested average speed, in the vicinity of 30km/h, can be considered relatively high: It is the speed achieved by the 99B when traffic is light. Thought such speed is very achievable by LRT, example of LRT running at such average speed in area presenting similarity with Broadway hasn’t been provided.

We could think of the blue line in Los Angeles, one of the busiest in North America, with over 80,000 boarding/day. The inconvenience of this example, is that with over 100 people killed on the track of this LRT line since its inspection in 1990, it is also one of the most treacherous LRT line in North America.

Unfortunately, like I have previously noticed, accident rate and ridership can be pretty well correlated. European tram achieve good safety record by running simply at much lower speed than their american counterpart in urban environment comparable to Broadway.

Confidence in travel time

  • Is the modelling for surface transit assuming a perfect world?

On this topic, one will notice that, not unlike other French tram project, the Paris tram T3 average speed had been over estimated by more than 25% during the public consultation. the given reason is that the world was less perfect that expected, since you will find jay walker undisciplined car driver and other behavior affecting the average speed [6]

Capacity

An LRT line can move huge number of people, and Translink advance number as high as 10,000 person per hour per direction, but what is the price to pay for it?

there is a limit on frequency possible while still having traffic signal preemption. this limit imposes either capacity or speed/frequency reliability. credit (3)

At some frequency point, traffic signal priority can’t get granted. That is the reason why Translink provide slower travel time with a BRT (which need to be more frequent) than a LRT.

  • what is the highest frequency achievable with the posted travel time. or
  • what is the maximum capacity for the system without compromising travel time?

As a matter of reference, In European literature, we will find a capacity limit of a tram at around 6,000 persons per hour per direction, in normal condition (headway enabling traffic signal preemption) [5].

Platform width

narrow platforms could be quickly overcrowded thanks to high ridership. credit photo (1)


Again, comparing with the Paris T3 trams with a ridership of 110,000 people, similar to the one envisioned for Broadway…In the Parisian T3 case, the boarding is done at 17 stations with platform of 5 meters width..when the Translink study suggests boarding at as little as 13 stations of around 3 meters width…In Edmonton, the LRT has central platform width of 8 meters.

  • That is, the suggested boarding area proposed by Translink could be more than twice smaller the one offered by the Paris tramway T3.

Paris tram t3 side platform (right) are 5 meters wide, and Edmonton central platform (left) are 8meters wide...does 3 meters platform wide will be enough to handle expected ridership on Broadway? credit photo right (2), left (3)

  • How platform crowding gonna impact the dwelling time? Waiting experience?

Interference with local bus routes

It has been admitted by the Translink planners that a surface LRT will impact negatively local route along Broadway, what is not hard to fathom…
According to the frequency of the surface LRT it will also impact the travel time of crossing route due to signal preemption by the surface LRT. The measured impact of it has not been provided.

street-scape

The 99feet wide Broadway is mostly dedicated to vehicular traffic. Does the streetscape could provide more space to pedestrians and be more cyclists friendly? credit photo (8)

Broadway is not that wide, and implementation of an LRT supposes some compromising. Note surprisingly, parking lanes could disappear, but may be more of a concern could be the reduction of pedestrian space on sidewalk required at station location. Platform wide inline with the one seen on system with comparable ridership, suggest that an broadway LRT could reclaim 11 to 12 meters ROW, at station location, that is close to the equivalent of 4 lanes of traffic to remove. Cyclist are not expected to be on Broadway, and anyway current preservation of sidewalk width could prevent bike parking.

  • An LRT is often considered as an opportunity to improve the street-scape but it also imposes constraints

Since Allan Jacobs is scheduled to be a keynote speaker at an upcoming SFU conference on the future of Broadway, it could be interesting to compare Broadway to Boulevard Saint Michel in Paris. the later Boulevard is 30m wide, so similar to Broadway, but with a significantly different space allocation since it has only 4 lanes of traffic making room for ample sidewalks allowing coffee patios…Boulevard Saint Michel is what Allan jacobs consider a Great Streets.

  • Does the need to accommodate an LRT will not compromise a similar fate for Broadway?

Ample sidewalks allow for life and social interaction on the 30meters wide Boulevard Saint Michel in Paris. Large sidewalks grant airspace for majestic trees. This Boulevard is considered a 'great street'by Allan Jacobs. credit photo left (7)

But more important, as noticed by Allan Jacobs, with the Champs-Élysées Avenue, and as we know it here with Granville Street, a street could needs several iterations of work before becoming a “great street”.

  • Does the permanence of an LRT will not compromise the ability to correct unavoidable mistake, or rather to allow the streetscape to evolve in function of new and unforeseen future needs?


[1] Keegan Bursaw

[2] Живые улицы

[3] one42chrisp

[4] Simon Chambers

[5] BHLS or tramway in France : scope of application and choice, Sébastien RABUEL, CERTU, French Ministry of Transportation, July 13th – 2010

[6] A french audit has mesured the average speed of the Parisian tramway t3 at 16 km/h instead of the the planned 20km, ibid. “Le tram se traîne“, Dec 23, 2009, Le Parisien

[7] Adrian

[8] Boris

[8] Great Streets, Allan jacobs, MIT Press, 1995

Post updated on April 6th

As mentioned by Stephen Rees, I was at “a special blogger breakfast” about the project where Jeff Busby and Margaret Wittgens from Translink provided a description of the different options and was answering our questions [1]. Translink has provided significantly more material in this phase than in phase 1.

The consultation process

Like in Phase 1, translink has scheduled several workshops. In those workshops, Translink staff engage conversation where you have the opportunity to discuss your concerns, opinions not only with staff but also with your ‘neighbors’ and understand others viewpoints. It is a very constructive approach, and I warmly recommend people to attend those workshops and provide feedback as soon as possible in the process to Translink.

Some comments:

In the preliminary phases, it was unclear what Translink was meaning by “LRT”, an LRT in the American sense, or a tram in the European sense? A later solution apparently favored by noticeably UBC professor Patrick Condon and a relatively active Broadway merchant group called BARSTA.

  • The Phase 2 gives a clear answer: the option is an LRT in the american sense.

Compared to the “business as usual case” (assumed to be the bus 99B) [4] the cost required to attract additional ridership is around $25,000 per new rider, as suggested by the graph below comparing the different solutions proposed by Translink

cost per new rider is around $25,000, except two outliers, the RRT above and the BRT below. Numbers from (4)

That is, the additional ridership could be at the expense of local bus routes, so if the goal is to increase the Transit mode share, and that is a goal of both the Province and the City of Vancouver [5], the figure become more striking, and solutions providing net gain time on the Commercial Drive to Central Broadway seems at a net advantage in term of “buck for the bang”.

Capital cost per point of additional Transit mode share in the corridor, compared to the 'business as usual' case. Numbers from (4)

Some solutions provide clear advantage in time of access time from Commercial to Cambie, and convenience from the Millenium (lack of Transfer), over others; and at least from the cost/additional rider perspective, looks reasonably priced. Obviously it couldn’t be the only metrics to look at…among others are the travel time to UBC [2], operating cost…

Under this regard, the lately added Combo 2 , RRT+BRT, could require more refinement:
The redundancy of service East of Arbutus doesn’t seem to provide the bang for the buck, noticeably in term of serviced area. We could have preferred something looking more like the rubber tire version of Combo 1 or looking like the figure below

Combo 2 could have been maybe better served by a 'BRT' reusing the 84 alignment terminating at Main, and a potential rerouting of the 44 to serve the RRT

The regional perspective

That is, as reported of this week workshops, and already outlined here, it is hard to ignore the regional significance of the connection of the Millennium line to the Canada line, which could have a “shaping” effect probably as great as if not greater than an extension of the existing Skytrain in the confins of the GVRD.

A discussion has been engaged by Stephen Rees on the trip model used to generate ridership. It appeared that Translink consider the Evergreen line built in its modelling. That says, they also rely on growth projection provided by external agencies; and this growth projection could not have considered a transit network effect

The network effect

The gap in the Vancouver rapid transit network is hard to ignore. credit (3)

On this topic, Jeffrey Busby mentioned that the scope of the study is really the Broadway corridor, and not addressing the question of the “extension” or not of the Millennium line.

  • According to the selected option, this question could be still open, leaving customer of the Millennium line to their frustration for very long time.

In that sense, an apparent cheaper solution, not based on an extension of the Millennium line could prove to be a costly mistake, but obviously all of that need to be quantified and LRT could make sense at least on part of the corridor


[1] You will find other account of it at Southfraser.net, vpsn blog or citycaucus.com

[2] The choice to prefer to compare travel time between Commercial and central Broadway rather than UBC is deliberate since UBC bound riders, mostly students, could be less sensitive to travel time than the more general users.

[3] Illustration from Jarret Walker

[4] UBC Line Rapid Transit Study Evaluation Summary – March/April 2011

[5] Province call for a doubling of the Transit ridership by 2020. Vancouver call for 50% non-auto mode share in the city by 2020

Follow

Get every new post delivered to your Inbox.

Join 42 other followers