Post updated on January 29th, 2017

Ill conceived, since according to Translink [1], The proposed Surrey L line (Guilford, Surrey central newton, titled LRT 4 in the transit study), was among the poorest options Translink has studied for Surrey. An option which will saddle translink with increased operation cost without matching revenue to sustain it, for generation to come [1]. and an option which provide a deeply negative return on investment:

Even  a multiple account  evaluation (taking account social benefit at large), The return on investment is simply not there!

Even a multiple account evaluation (taking account social benefit at large), The return on investment is simply not there! (figure from [1])

Ill conceived because the Surrey LRT approach is in essence local and ignore the regional demand.

Missed opportunity because it will hinder the region to do the right thing to develop alternatives allowing the south Fraser area to become a less car dependent place before it is too late. At the root of this poor decision making is an original sin: A Vancouver centered optic where Surrey is seen as a fringe area in need to be connected to the Expo line; and a ideological bias from the Surrey City council making the streetcar the only answer whatever the question is. This optic ignore the development occurring in the Fraser valley, in Langley and beyond, more noticeably Abbotsford and Chilliwack, and the subsequent regional transportation demand; something we have touched in 2012:

Context and opportunities

A first draft of Regional transportation in the Valley

A draft Regional transportation demand in the Fraser Valley

The region becoming more vast than Metro-Vancouver, people travel longer distance, with more dispersed destinations, the challenge is then to provide an appealing transit alternative for people in the Valley and the south Fraser area: that means, fast comfortable, and as few as possible transfer toward meaningful destinations.

A LRT running not faster than a bus is not a compelling solution on which to build a regional transportation backbone, but a transportation mode such as the skytrain is not suitable for long distance travel; Also the skytrain technology, designed for very frequent service, become too expensive to maintain as soon as less frequent service is needed [9], so extending the skytrain forever is not a solution able to address the need beyond Langley.

The Interurban vision

It is time for the Vancouver region to explore new paradigms, and reconsider the regional train with an European eye. That is to not entertain solution such as the West Coast Express, but to consider light passenger trains able to achieve a commercial speed in excess of 70km/h (typically means max speed in excess of 140km/h)[13], with comfortable seating: the bombardier Talent, once used for the Ottawa’s O train, is a good starting point to entertain the discussion. below is the kind of rolling stock we have in mind:

Bomabrdier Talent 2, able to run at up to 160km/h and a Alstom Regiolis tram-train, able to run at 100km/h on mainline, and still able to run as a tram on the street (credit wikipedia)

Thought the Fraser valley has the former interurban line, the BCER, this line is not suitable for most of its length: it presents a too meandering horizontal alignment. It is also already heavily used by freight trains in some sections[3], while in other, the tracks need to be completely renewed in order to accommodate off the shelve European train set [17], so there is no clear value at constraining the option on the sole BCER corridor. Below is an example addressing the challenge, with a 70km long rail line (in blue) from Richmond Bridgeport to Abbotsford (connecting with the former BCER for potential extension to Chilliwack) using mainly BC Hydro corridor (and rail rail fo way in Richmond).Part of the line reflects also a vision once expressed by the White Rock Transportation and safety committee [12]

Interurban line, from Richmond Bridgeport to Abbotsford; using  BC Hydro corridors on most of its length

Interurban line, from Richmond Bridgeport to Abbotsford; using BC Hydro corridors on most of its length (the map highlight the BC hydro as well as existing rail corridors)

The advantage of this line is that

  • it provides a fairly straight line without too short curvatures [4] and an adequate vertical profile [5]
  • it requires virtually no private land acquisition
  • It is completely separated from freight trains; a Transport Canada requirement to allow train built on European standard to operate on the line

The expo line then needs to be extended 3km along King George to provide a seamless transfer with the regional train[6].

Fraser crossing in the vicinity of MacAdam creek, in Delta, where the alignment takes advantage of the bluff on the south side, to reduce the approach to a bridge which clearance should be at least as high as the Alex Fraser bridge – new Panamax ship class allows an air draft of up to 58m

To preserve the future, The regional line should be built for European style standard train EMU (such as the Bombardier talent-2). That supposes to build the line to UIC standards allowing speed in excess of 160km/h, ideally 200km/h: that means in particular:

  • double track platform width of ~13m
  • no level crossing

Estimated travel time (in mn) between key stations with an express train calling only at the below mentioned station [19]

Abbotsford Langley Surrey Queensborough Richmond
Abbotsford 15 24 31 42
Langley 15 9 16 27
Surrey 24 9 7 18
Queensborough 31 16 7 11
Richmond 42 27 18 11

cross section of the track platform for the Lyon-Marseille High speed line ( 350km/h max speed) - source (2); 500kv double circuit tubular tower able to to replace a lattice tower if the tower foot print is an issue - source (15)

Numbers suggest such a line could be built at cad$35M/km [7] putting the total cost of the regional line at $2.5Billions (remember that the Brunette interchange alone costs $0.5B). However, the line doesn’t need to be built in one shot, and can be phased, a first phase consisting of the 12km Langley-Surrey section, estimated then at ~$500M.

For this short first section, a tram-train, able to reach 100km/h and to ride the Langley streets could be considered at first [8]. Since it could benefit of a totally segregated infrastructure (in trench) between Langley and Surrey, a 12 mn travel time could be easily reach. (A Translink study [1] suggests such travel time could attract up to 6,000 pphpd in 2041, what is the relevance zone for such a transportation mode)

Cost and benefit

The skytrain extension has been costed at $85M/km (2010)[1] in viaduct and $140/km (2010)underground [11] (all including stations), so that the total cost of the project in its first phase could be keep in the $1B envelope, and still include a BRT lines Surrey 88th-Whiterock, as well as some B line connecting Guilford not only to Surrey central but also to the interurban and Coquitlam.

The closest studied option by Translink was the option titled RRT 1A (skytrain extended to Langley and BRT on KGH and 104th)[1]: our proposed option in its first phase is slightly less appealing on the Langley Surrey section (doens’t go directly to Surrey center, and doesn’t eliminate the skytrain transfer). On the other hand, it still provides similar travel time, between the 2 cities (and Vancouver), and a tram-train option allow a finer coverage of Langley downtown. Subsequent extensions make our proposal of better value.

A Skytrain to Langley , means, the train could run well below capacity (or at very spare frequency, what is not without issues). an extension collecting both the traffic flow coming from the King George corridor, and Langley could make better use of the skytrain capacity

Our proposal makes also a better use of the skytrain capacity (the extension collect ridership from both the Langley Regional train and the KGH BRT). Our proposal offers a shorter BRT route on the KGH branch (due to the skytrain expansion here), and equal on the 104th branch: We can consider our proposal carries all the benefit of the RRT 1A option, at half of the price tag. In any case, it is a much better solution than the one currently imposed by the Mayors’council, which will not benefit to Langley and will be detrimental to White Rock by introducing an additional transfer with no travel time benefit, and which cost has already escalated to a whopping $100M/km

[1] Surrey Rapid transit Alternatives Analysis – Phase 2 Evaluation, Translink, 2012.

[2] V. Profillidis, Railway Management and Engineering: Fourth Edition, Routeledge 2016

[3] In addition to the operating constraint imposed by the freight trains, Transport canada requirement for passenger train mixing with freight train make such solution a non starter beside commuter train such as the West coast express)

[4] The curvature suggests speed limit of 160 to 200km/h speed between Langley and Surrey, 160km/h around the Nordel Mac Adam Creek section (thought requiring some expropriation), 120-140Km/h, in the approach south of Langley…that is assuming a typically a minimum curve of 1250m for 160km/h; some figure also roughly and intrinsically adopted for the californian HST [10]

[5] French high speed rail tracks have gradient of up to 35/100, and 40/1000 on the german Koln Rhein [2].

[6] In the proposed scheme, the track along King George Highway could be branched before the eponymous station. The later could be retired, and
a new one built.

[7] French high speed line, built on higher standard, are typically build at a cost of cad$35M/km or €22M/km (10% for land acquisition, 65% for civil engineering, and 25% for rail, power and signalling)[16]. However the Fraser crossing could require a specific estimate

[8] Such choice, should not hinder the capacity of the line to run faster train. If electric, the tram-train should then be dual voltage, the main line, equipped with standard 25kv AC60Hz, the street extension in 750V. Similarly the stations should be designed to allow a layered service with tram train calling at local stations, while faster train could call only at main stations.

[9] The skytrain vehicles (and consists) are designed to maximize the throughout of the line, so seating is minimized, and comfort of it is not a priority. The driverless technology allow very high frequency at marginal cost, but it imposes also high “minimal operation” cost, to both maintain and operate the line, making this technology not a prime choice in the current condition.

[10] California High-Speed Train Project : Technical Memorandum, Alignment Design Standards for High-Speed Train Operation TM 2.1.2; California High-Speed Rail Authority, 2009

[11] UBC Line rapid transit study: Phase 2 Evaluation report Steer Davies Gleave, August 2012

[12] South Fraser Strategic area transit plan, Transportation and safety committee, City of White Rock, August 22, 2006

[13] This tends to be a typical requirement for new regional transit lines in european conurbation. As an example the new subway line planned in Paris area are targetted to have a commercial speed of 55 to 65km/h.

[14] It is interesting to notice that the LRT line in Surrey is costed higher than a french High speed line, the later arguably incurring more extended civil engineering work: it is possibly due to the fact that Surrey LRT construction cost include the relocation of the underground utilities, and the construction method must include important traffic mitigation.

[15] Proponent’s environmental Assessment: Tehachapi Renewable Transmission Project, Southern California Edison, 2009, Figure 3.2.4.

[16] La grande vitesse ferroviaire : un modèle porté au-delà de sa pertinence, Cour Des Comptes, Republique francaise, 2014

[17] the track renewal cost can be estimated at Cad$5M/km, including electrification, for a single track, and work progress can be as fast as 600m of track renewal/day, this from a similr work done to establish a tram-train in the vicinity of Nantes. This number is in line with the provided by a Leewood report[20] for the Rail for the Valley organization

[18] Camille Saïsset, Tram-train Nantes-Châteaubriant, une liaison efficace pour la réouverture de voies, Actu-Environnement, July 27, 2012.

[19] the numbers assume a average speed line of 140km/h, an average acceleration of 1m/s/s, and a dwelling time of 2.5mn. The 24 mn travel time between Surrey and ABbotsford, can be compared to the 44mn travel time given by [20] between Abbotsford and Surrey Newton using the BCER or the Google estimated 35mn road travel time between Abbotsford (Highway 1#11) and Surrey Central (with clear traffic)

[20] Lower Fraser Valley British Columbia, Chilliwack to Surrey Interurban, proposal fro rail for the Valley, David Cockle, Leewood Project, 2010.

At a time when “both TransLink and the City of Vancouver are aiming to establish a common vision for bus service in downtown Vancouver“, it is still interesting to have a look at what has been done in past in that respect

In 1975, the Bureau of Transit Services, then depending from the Minister of municipal affairs prepared a transit service plan to complement the City land plan [1]:

1975 Vancouver Downtown transit Plan

1975 proposal for the Vancouver Downtown transit Plan, extract from [1]

This plan is important in many aspects, and mainly the adopted methodology

It lays down the general picture in which a downtown plan can take shape

Thought not in service in 1975, the West Coast Express concept were already discussed, and the terminals and vessels, for the seabus, were under construction. The skytrain was still a quite distant concept [2], but the LRT discussed in the plan is clearly considered as a pre-metro, aimed to be underground in the Core Business district.

But More importantly,

It lays down 7 principles guiding the plan
Those principle are subdivized into 3 common service characteristics:

  • Direct Routing
  • (1) Don’t divert routes to serve specific needs: Diversion means a less attractive service for most of the travellers
    (2) Use secondary services connecting to main ones, to serve “out of the way” area (rather than divert main routes)

  • Minimize unecessary transfers
  • (3) Use the downtown grid for “random schedule” transfers

  • Minimal walking distance to final destinations
  • StraightThru
    (4) Go Straight thru the “center of gravity” of an area, and not its periphery, which increases the total walking distance by half.
    (5) Transit and pedestrians: the concept of pedestrianization and transit must not be treated independently.
    The study cites Jane Jacobs [3] to support the idea of bringing together the transit network with the pedestrian area [6]
    (6) Prefer two way operations over one way, since it offers the maximum coverage
    (7) Prefer nearside bus stop over farside, sinec it allows the passengers to alight before have to wait at a traffic light.

Many, if not all, of this principles are what Jarret Walker calls the geometry of Transit, and that is the reason why they are still as valid in 2013 as they were in 1975:

  • Principle (7): Thought some cities like Montreal and Toronto, have bus stopa on the nearside, most of the cities adopt a farside model, since it usually allows a better general traffic output, and modern LRT/trams use also farside bus stops, since it allows a more efficient signal preemption
  • Principle (1), (4) and (6): They are very strong transit geometry principles which have justified the conversion of Manners Mall in Wellington New Zealand, from a pedestrian only street to a transit mall.
  • Principle (4) and (5) are why transit needs to be considered as part of the urban fabric

Some comments on the DT plan
The geometry of transit largely comfort the relevance of the historic streetcar grid:

Robson bus 5 ( Ex-Saskatoon Brill trolley 2363), at Robson square, in May 1980. Note the “Shoppers Free” Bus sign – Photo, courtesy from Angus McIntyre

  • The choice of the streets is guided by principle (4)
    • At the time of drafting the plan the Robson bus was using the couplet of one way streets Smythe/Robson: a two way service along Robson is clearly the privilegied choice.
  • The streetcar service along Hornby, was expected to use the Arbutus line outside the DT core: the routing thru Hornby plan is consistent with the 1972 Erickson plan developped for the court house complex.
    • The advent of the Canada line kind of fullfill this vision.
  • The Robson square is envisioned to be a pedestrian oriented area, serviced by transit in full accordance with principle (4), and the Arthur Erickson’s vision for Robson square:
      The only traffic through the square will be inner city buses, linking the West and and False Creek. Since buses function as people movers, they are seen as a compliment or enhancement to the pedestrian activity of the civic square […]

The underlying philosophy leading to the plan, articulating pedestrian areas around transit, and not the reverse, illustrates the dramatic shift of the current Vancouver council approach, which dismiss the transit geometry, as illustrates the Robson bus circling the square
to serve a “specific need”.

At the end a transit service is envisioned on Nelson to complement the planned development of the westend, as well as a pheripheral line, to serve the “social and recreational” place on the pheriphery of downtown:

Remarkably, they are echoing recurring wishes for Transit in downtown, but the plan warms that “…there really is not much to be gained in professing support for programmes to get more people to use public transit without commitment to actions to give transit priority use of streets in Downtown Vancouver and in other urban centres in the metropolitan area.”

Alas, the current Vancouver council policies could not be farther apart of this commitment to transit.

One can also consult [5] for a different coverage of [1]

[1] Draft memorandum on transit service planning to complement downtown peninsula plans of the City of Vancouver, Bureau of Transit Services, BC Minister of Municipal affairs, Sept 19, 1975. (13.6MB file)

[2] the underlying concept had been drafted by Harry Rankin by 1970, see The Case for Rapid Transit…in 1970

[3] The Death and Life of Great American Cities, Jane Jacobs, Random House, New York, 1961

[4] 51-61-71 Project, block 71 Schematics, Arthur Erickson Architects, 1974

[5] Vancouver’s 1975 downtown transit plan, John Calimenete, April 7, 2010

[6] This view is echoed by Jan Gehl, among others, providing rational for Transit on Sydney’s George Street.

That is from their May 7th, 2013 issue, which is rich of Transportation perspective,…,
and eventually illustrates the dichotomy of thought on it between the Western world and Asia

Jaywalking is responsible of the Beijing traffic woes

As you could know, Beijing is facing massive traffic issues, and here like too often in North America before, it is considered that the pedestrians are the problem. Enforcing the jaywalking laws is not an easy matter but it is deemed necessary by chinese,…this to be a “world class” country… at par with the USA…
In Vancouver, Councillor Heather Deal, whose devoted great amount of VPD time and taxpayer money to enforce the local jaywalking laws, couldn’t agree more [5].

In the Meantime, it is worth to note that in the not so “world class” countries such UK or France, jaywalking is legal as in many other European countries, and still it is generally safer to be a pedestrian there than in Vancouver and more generally in North America.

Cycling in Hong Kong raises a safety issue

The edition contains not less than 2 articles related to cycling in Hong Kong: “Cyclist see open roads up ahead”, and “Cyclists face uphill ride on buses, MTR”.

Cycling is pretty much foreign to Hong Kongers: the fact that the Chairman of the Hong Kong Cycling alliance, Martin Turner, is a British raised individual is tale telling…And when cycling is considered it is mostly for recreational purpose, could lament Martin. Nevertheless, anecdotal evidences seem to show that cycling is on the rise in Hong Kong, like anywhere else, but it seems to be little appetite to quantify that:

Cycling seems on the rise in Hong Kong, and it becomes increasingly difficult to find a free spot to park your bike, before boarding the Transit system

Cycling seems on the rise in Hong Kong, and it becomes increasingly difficult to find a free spot to park your bike, before boarding the Transit system – notice Police can seize bike tied to the handrail – Credit Photo (4)

Statistics show that bike accidents are on the rise too. Helmet laws and bike licensing, are called by some quarters, to reverse this worrisome trend!

Turner has another opinion, and is lobbying for bike rack on bus, like in San Francisco, or Vancouver,…a North American specificity not seen Europe. This promise to be a tough sell, but there is lot of things to do to improve cycling in Hong Kong beside that:


Hong Kong bike lane (Along Ting Kok Rd, Kong Kong NT): More often that not, Hong Kong's cyclists are expected to walk their bikes to the Bike path... and dismount at intersections...what by the way is usually not respected! -credit photo left (4), right, Google

Light Rail or Monorail in Kong Kong

The debate concerns the redevelopment of the former Hong Kong’s airport: Kai Tak, which still look pretty much like below:

View on Kai Tak, the Former Hong Kong Airport.

View on Kai Tak, the Former Hong Kong Airport.

The Civil Engineering and Development Department (CEDD) of Hong Kong has a grand vision for the site, which seems reminiscent of Le Corbusier’s cite radieuse, including a “people mover” under the form of a monorail [1]:

Proposed Monorail for Kai Tak new districtHkMonorailArtistView

Proposed Monorail for Kai Tak new district

Veolia operating The Hong Kong Trams, is making the case for a tramway. Many readers of the South China Morning Post support this idea. Norman Y. S. Heung, project manager at the CEDD Office, explains it is “Practically impossible to accommodate tram system at Kai Tak”, because taking too much road space (sic)…Worth to note that most of the area is not even built yet!

Many other arguments are advanced in favour of the Monorail, which is also presented as a tourist attraction… but at the end the quality of the urban environment is not one of them. It is also explained that the “walking environment will be improved by provision of footbridges and [underpasses]” (sic).

So Does the Kai Tak’s monorail will look like the Chongqing one , or does Hong Kongers will push for a different street experience, may be on the model of the Kunming’s Zhengyi Rd?

Left, Chongqing (China): An avenue with a Monorail (opened in 2011) - Right, Kunming (China): Zhengyi Rd offers a Bld experience, which at par with the ones more traditionally founded in Europe - credit photo left (3), right, (4)

[1] See the video and other information at Hong Kong CEDD

[2] Old Cat

[3] South China Morning Post

[4] VivenDesign

[5] Vancouver launches campaign to educate ‘fragile’ pedestrians, Jeff Lee, Vancouver Sun, February 07, 2012.

Contribution to the debate:

Adam is sharing an illustration to support his proposal, which has been the object of a Sun column:

A LRT line roughly following 2nd, then the Arbutus railtrack up to the 16th avenue

A LRT line roughly following 2nd, then the Arbutus railtrack up to the 16th avenue

As many, the Adam’s proposal apparently assumes that the main demand is on UBC. It is worth to mention that the numbers ran by Translink suggests that the highest demand is on the central Broadway portion [1]

2041 ridership prediction AM peak WB in the case of the RRT line

2041 ridership prediction AM peak WB in the case of the RRT line – source [1]

The Translink ridership predictions west of Arbutus (4000pphpd) is in fact less than a third of the one predicted on Central Broadway

This finding effectively strongly question the relevance of a subway west of Arbutus, or at least justify a phasing of the subway construction, a solution we have started to investigated in our previous post. In fact [1] has studied a first phase ending at Arbutus, costed at $1.5B, and states that:

The economic assessment of phasing RRT is positive with a benefit:cost ratio of 2.7, vs. 2.3 if built to UBC initially

[1] UBC Line rapid transit study: Phase 2 Evaluation report Steer Davies Gleave, August 2012

Sydney: BRT tunnel and trams

December 17, 2012

Sydney is confronted to bus congestion in its Core Business District (CBD):

6,000 bus enter into the Sydney CBD per day, 1000 during the peak hour. Too many bus routes lead to a poorly legible network

Beside a poorly legible network (Sydney has 850 bus routes) [7], the great number of bus routes is also a source of inefficiency : thought that the offering bus-seat capacity could be great, the practical one could be much less on a given corridor (over-supply on some bus routes is not compensating under supply on others)

The European solution

It is a problem many European cities are facing, and in Europe, it is in general the impetuous to switch to LRT – the rational is simple:

  • A modern Tram replaces 5 buses
  • Associated network consolidation allows a better adjustment of the offer to the demand, as well as a better legibility of it
  • A Tram, being electric powered, generate less noise, and pollution

Hence trams improves the livability of the city. Generally, European modern trams are not justified by speed or urban development opportunities, which are very limited in mature cities but mainly by ridership. They operates on trunk lines fed by bus routes:

  • Passengers have to transfer

The fact that the transfer from bus to tram, is not compensated by a time gain (like it could be from bus to subway) is one of the main drawback of such an approach. Providing a superior service and experience is a way to compensate for the disagreement. The European solution in Sydney’s CBD could be the vision proposed by Gehl Architects [2]:

Pedestrian George Street with LRT, in a typically European arrangement.

Pedestrian George Street with LRT, in a typically European arrangement – credit picture (2)

The Australian approach

Australia is land of the finest BRTs. Tunnel a BRT is a solution, natural enough in Sydney, to be considered, in despite of its price tag; $2 Billions, for a ~2 km tunnel. The rational is simple:

  • A BRT can avoid a transfer

The debate

BRT vs LRT, the context of the debate - Left: Bus volumes entering the Sydney City Centre during the two hour morning peak - Right: proposed BRT and LRT alignment and cost. The full LRT is 12 km long with implementation cost estimated at $1.6B

You could expect the government agencies, ministries and other actors to debate on facts, and not on opinions to lobby one system over another:

reading the different reports [3][4][5] will prove you wrong.

Below is how the debate has occurred between two New South Wales (NSW) government outlets, Transport NSW, favoring the LRT, and Infrastructure NSW (InNSW), an “independent agency”, supposed to not base recommendation on politic allegiance, favoring the BRT:

InNSW estimates the current demand at 9000 pphpd in the corridor [5]. The different system are assumed as below by the different actors:

System InNSW [5] Transport NSW [3] Certu [6]
BRT Capacity 20,000 3,500
LRT Capacity [9] 9,000 12,000 6,000
LRT Frequency 2mn 2mn 3mn

The numbers provided by Certu (a French agency), are for reference. They are considering optimal surface operation conditions (signal preemption possible, perfect interval maintained) signaling the typical area of relevance for a given technology. Thought the numbers advanced by the Australian authorities are theoretically possible, they most probably supposes a compromise on the level of service:

High capacity BRT, like the one pictured in Brisbane come at a  cost

High capacity BRT, like the one pictured in Brisbane come at a cost – credit photo (1)

The InNSW report contains lot of fear mongering on LRTs, but what is noticeable in the case of the both approaches, is that none quantifies travel time, neither expected operating cost, not even speaking of a cost/benefit ratio.

More importantly, beside removing bus of the surface, the BRT tunnel tries to address a problem different from the LRT: the former addresses regional access-and so doing tend to largely duplicate an existing rail corridor- while the later addresses the more local access into the CBD. One will find some more detail, especially question about the BRT approach in [8]

The urban approach: George Street

As suggested before, the tram choice over a tunnel BRT is not only a transportation choice, it is an urbanistic one too: George street is a 2.5km long street, it is the major Sydney spine. Jan Gehl compares its potential to the one mile long Barcelona’s las Ramblas [2]:

  • Both are bounded, by the sea on one side, and by a major commuter railway station on the other
  • Both are of similar with, 22 to 30m for George street

The Cost of the different approaches for George street:

BRT Tunnel [5] Surface LRT [3]
$2B $500M

InNSW suggested that George street -20 to 30m width- is not wide enough to accommodate both a tram and pedestrians, and explains that segregation of transport and pedestrian activities, or aggressive pedestrianization, is a better objective [5] (There is very few street of this wide successfully fully pedestrianized [10]). the Bus BRT is considered as a rapid transit with 2 underground stations [5].

George Street cross-section – as proposed by Gehl architects – credit (2)

Jan Gehl touted the concept of overlap use, with trams sharing the urban space with pedestrians, supporting thriving activities on the rather wide George street, and the neighboring alleys and lanes. In fact Transport for NSW states in [3]:

International experience indicates that the pedestrianization of George street without activation by light rail could reduce safety and accessibility, leading to a decline in retail activity.

The surface tram option is envisioned with a stop every 350m, so the tram is considered as a people mover. Evolving in a shared space, its average speed will not be much better than 10km/h on George street – Rest of the alignment is in a more “suburban” environment, so average speed outside the CBD should be more competitive with existing option

Some questions

At the end the LRT has been chosen over the BRT. Nevertheless, considering the expected passenger volume, one could still question this choice:

Shared spaces work well when traffic is light :

  • Crossing the street is unimpeded by traffic (that is one advantage of fewer trains over more buses)

In the George street case, the demand suggests a train every mn, so starting to create a “wall” of trains:

Too heavy LRT traffic can compromise the "sharing space" concept

Too heavy LRT traffic can compromise the “sharing space” concept

But what could be of more concern, is that the system could be under-sized. The considered 9,000 pphpd requirement suggests that the debate should not have been a BRT versus trams one, but eventually trams versus a heavier rail mode, including a grade separated LRT – that is the Ottawa direction – or extension of the Sydney Cityrail (a S-bahn or RER equivalent). The later is fortunately on the menu [7], and hopefully will go in a direction to reduce the pressure on the tram.

Lessons for Vancouver.

Th Sydney LRT choice has generated some interest in Vancouver here and there : The Sydney choice is done to address problems very different of the ones faced either by Vancouver or Surrey. Still, the underlying motivation, for the heavy transit investment, is mainly to address existing demand. It also shows you are better to understand what objective you are trying to pursue, before embarking into a technology debate, which can lead on exaggerated and misleading claims.

If there is one lesson to be directly learned for Vancouver, it is the idea that [3]:

separating pedestrians and transport is contrary to good planning practice and international experience, which shows transport and pedestrians should be integrated to support thriving cities

Transit at  Sydney Town Hall

Transit at Sydney Town Hall

Integrating transit into pedestrian oriented streets, is also the only way to have an extensive and still successful pedestrian friendly street network. In other word, let transit work, is the first and probably most important step toward bold pedestrianization scheme: An important lesson we could learn more especially fromWellington, NZ.

All $ figure in Asutralian $

[1] flickr user SHOROC

[2] George street Urban design study, Gehl Architects for City of Sydney, January 2012

[3] Sydney Light rail’s future, Transport for NSW, December 2012

[4] Metro Transport Sydney’s position on LRT

[5] First things first, Infra NSW, October 2012.

[6] Tramway et Bus à Haut Niveau de Service (BHNS) en France : domaines de pertinence en zone urbaine from Transport/Environnement/Circulation (TEC) n° 203, September 209.

[7] Transportation Master Plan, Transport for NSW, December 2012

[8] blog.

[9] That is considering a 45m long train. Fine grained Sydney downtown grid doesn’t allow for much longer trains on George street without hindering access to lateral streets

[10] New York City’s Broadway at ~80 feet wide is one example, but the pedestrianized block around Times Square see a traffic of 350,000 pedestrians/day – a uncommonly high volume.

Or how some streetcar advocates make their case by using the Iraq war’s lobbyists strategy.

Such strategy is not to be embarrassed with facts, but to express an opinion legitimated by an ample corpus of previously expressed opinions, which are presented as facts. It becomes then a mythology, because it is asked to people to believe unquestionably in them. and if it succeed at it, the unsubstantiated “facts” become “truisms”!

The streetcar example with a report : Streetcar Land Use Study

It is a report commissioned and published by the Planning department of the District of Columbia- so must be serious (We refer to it as “the report”)- which explains that a Washington D.C. streetcar network could generate $15Billion of investment along its corridors.

How it arrives to such a conclusion?

Basically it is grounded on a Portland streetcar company‘s paper [9], analyzing the real estate development in the years 1997-2008, which eventually happens to coincide with a global real estate boom, and general gentrification of cities’ downtown across the continent.

In addition of the global factors above, it has been also some more local factor attracting development in Portland:

  • A green belt constraining the development area
  • Other transit development (3 max line, an aerial tram…), all converging in downtown
  • Insitutional development [1]
  • Tax credit [1]
  • A street car loop

What is the exact contribution of the streetcar loop among the above cited parameters? It is not deciphered by the Washington D.C. study, apparently considering that the entirety of the developments occurring in the 2 blocks of the streetcar are triggered by virtue of its track presence.

No streetcar related redevelopment example: left, The San Fernando Building in LA, A successful revitalization effort in Down-town Los Angeles by developer Tom Gilmore- photo credit (3)-right the Woodward building neighborhood in Vancouver

What are the inherent quality of the streetcar provoking that?

The report describes it as a “Premium transit” transit service that is “reliable, predictable, and offers a high-quality ride—in other words, Metrorail [Note: the DC subway] or the streetcar“.

What about speed and frequency? does it really doesn’t matter? …and in what aspect a streetcar operating in mixed traffic can be more reliable-or predictable- than a bus?

A streetcar operating in mixed traffic is subject to the same reliability issue faced by a bus...with even less ability to avoid road impediment- credit photo (4)

What are the involved cost of the streetcar?

The venture of the report in this area is rich of learning. It states that: “Evidence […] suggests that streetcar vehicles offer better long-term cost-benefit value than buses”. Where are the evidence? 2 references are cited:

  • Street Smart: Streetcars and Cities in the Twenty-First Century – Gloria Ohland & Shelley Poticha; 2009
  • Seven Rules for Sustainable Communities from Patrick Condon [5]

It is worth to mention, that, first the conclusions of Patrick Condon are grounded on the finding of the other referenced book, and secondly, [5] presents numbers which should be subject to caution [6].

Circular referencing, but no cross checking…That was also the strategy of the Iraq war lobbyist

In anyway, a blanket statement like “streetcar vehicles offer better long-term cost-benefit value than buses” is discounting too many parameters to be taking seriously: one of them is that the long-term cost-benefit of a vehicle is tied to its productivity, which depend in part of the ridership.

What about other alternatives

The bus alternative is briefly investigated to be better dismissed: “Although well-designed BRT systems attract some development, their impacts are typically much less than those for rail”, this by citing [7] where one will have hard time to find which aspect of [7] leads the report to such a conclusion. In fact [7] suggests that “there is growing documentation of [BRT] positive development effects; however, given the newness of most BRT systems, more information is needed” while another [8] find that “the type and level of investment occurring near BRT stations appears comparable to the experience with TOD near rail transit”. Notice that this later reference provides relevant number:

“Since the Silver Line BRT was introduced, there has been over $571 million in investment along this corridor, and the tax base grew by 247%, compared to a city average of 146%. “

Relative growth on tax base in the corridor versus average… The Kind of information the streetcar report fails to provide.

And, outside transportation… does there is no other cost-effective avenue to shape development? Institutional impetuous as seeing in Surrey BC, seems to produce good effect, other large scale development like the Woodward building in Vancouver also…

Mythology building

Like in any mythology, with the streetcar mythology, facts are second to beliefs. The Streetcar myth just needs a critical mass of believers. If enough developers and buyers believe in it, the prophecy will be self fulling…that is why all the produced literature referencing itself is paramount.

Vancouver’s believer will then ask the question as Gordon Price did: “why not at least a return of the heritage tram to Science World?“, but the question shouldn’t be framed like it, it should be

  • “what you want to try to achieve by returning the heritage tram to Science World?”

[1] Numerous of land lots, developed around the streetcar, are or were institutional, and a 10 years property tax waiver has been put in place to “faciliate” development in the streetcar corridor(source: [2])

[2] Debunking Portland The City That Doesn’t Work, Randal O’Toole, July 9, 2007

[3] Eric Richardon

[4] Jarret Walker

[5] Seven Rules for Sustainable Communities, Patrick M. Condon

[6] In term of operating/capital cost: Number provided by APTA and Translink could suggest a pretty different picture, from the one stated in [5], see for example this post.

[7]TCRP Report ıı8: Bus Rapid Transit Practitioner’s
, 2007

[8]Bus Rapid Transit and Transit Oriented Development, Breakthrough Technologies Institute, Washington, 2008

[9]Portland Streetcar Development Oriented Transit, Office of Transportation and Portland Streetcar Inc.

Some Translink statistic

November 28, 2011

Some preliminary statistics essentially compiled of Translink Annual performance reviews (BC Transit service plans before 1998) and APTA for ridership and US data.

Ridership evolution since 1986 (unlinked trip)

Ridership per mode since 1986 (unlinked trip)

Translink ridership 1986-2010 (unlinked trip)

  • Due to the Olympic Games in 2010, it is probably prematured to draw conlusions, but if the trend maintains in 2011, and preliminary result of APTA shows that, it clearly demonstrates that canada Line has boosted the ridership by a significant number…
  • Of interest is also the slow erosion of the ridership on the trolleybus system, the avent of the Canada Line, not only didn’t have stopped it, but seems to have amplified it:

Things happen like if rider having to take a trolley all the way to DwonTwon, could now prefer to take a bus (especially north of 41st) to the Canada Line: That trend seems corroborated by the recent surge in ridership on route like 49, and seems to say a lot on how the transit rider behave in front of choice –direct but slow route– vs –fast with transfer

Ridership per capita since 1986 (unlinked trip)

Unlinked Transit trip per Capita 1986-2010

In agrowing region, it is important to see if ridership effectively growth on a capita basis, it is…
The figure above also indicates – in relative to ridership number normalized in 2000 – the gas consumption per capita.

  • It appears clearly enough that the gas tax, which has increased from 10c, in 2000, to 17c/l recently, is not a sustainable funding option to Translink… neither property tax, is!

Below, are some statistics, published now, to provide numbers to substantiate a discussion following a recent post on the priceTag blog.

Operating cost per trip

Operating cost per mode

To benchmark the operating cost/trip per mode, we have choose the US average per mode data, mostly because they are readily available, and also because the size of the LRT sampling is big enough to be meaningful. because the perating cost is mainly dependent of the wage, the $US currency has been kept. There is 2 remarkable things to note in the graph above:

  • The operating cost per trip of LRT or bus is very close. When you consider that in a typical system the LRT will operate the trunk route, while the bus will be asked to operate “social” service, which provide endemic ridership, it is hard to single out a mode as better than another one when taken on average on the basis of operating cost. that has been true for the last 25 years
  • The Translink bus operating/trip growth less than the US one, but what is the most striking is that in 1987, the operating cost/trip of the skytrain was $1.35. In 2010, it was $1.12. Nowadays, the average operating cost/trip of a US LRT is $US3.03…

Total Skytrain trip cost

Skytrain Operating plus Debt service cost (1986-2010)

With heavy investment, the operating cost is only part of the story. Usually the debt service is pretty great, an the Sacramento example previously presented illustrates it as well for “cheap” LRT.
The Skytrain debt service has been computed assuming a 30 years amortization at fixed rate, the rate was the 10 years+ Canada bond rate, at the date of the delivery of the purchase (opening new line, delivery of vehicles… It looks a pretty reasonable assumption since the number align pretty well with the one reported by BC Transit before 1998-Translink doesn’t carry the debt of the Skytrain). So far $2.7 billions of initial capital investment in the Skytrain network (Expo and Millennium lines have been accounted.

Obviously the opening of the Millennium line in the aftermath of a strike, has impacted severely the debt/trip.
The overall ridership on the network has absorbed it, and the Skytrain debt level was estimated at $2.87 per trip in 2010.

For Matter of comparison the total cost per trip of the Canada line was $3.99/trip, so like the Skytrain, in 2010…

non edited spreadsheet with original number available here (google docs spreadsheet ).